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Turbulent gravitational convection from a point
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We examine the turbulent gravitational convection which develops above a point
source of buoyant fluid in a stably stratified environment in which the buoyancy
frequency varies with height according to N2 = N2

s (z/zs)
β . This generalizes the

classical model of turbulent buoyant plumes rising through uniform and uniformly
stratified environments originally developed by Morton et al. (1956). By analogy,
the height of rise of a plume with initial buoyancy flux Fs has the form Hp =

Apε
−1/2
p F

1/4
s N

−3/4
s hp(λ, β) where εp is the entrainment constant for plume motion, Ap

is an O(1) constant, and the non-dimensional plume height, hp is a function of

λ = Apε
−1/2
p F

1/4
s N

−3/4
s /zs and β.

In the case β > 0, the stratification becomes progressively stronger with height, and
so plumes are always confined within a finite distance above the origin. Furthermore,
the non-dimensional height of rise h decreases with λ. In contrast, in the case β < 0, the
stratification becomes progressively weaker with height, and so the non-dimensional
plume height increases monotonically with λ. For slowly decaying stratification,
β > −8/3, the motion is confined within a finite distance above the source. However,
for each value of β with β < −8/3, there is a critical value λc(β) such that for
λ < λc a plume is confined to a region near the source while for λ > λc the motion
is unbounded. In the unbounded case, the motion asymptotes to the solution for
a buoyant plume rising through a uniform environment, with asymptotic buoyancy
flux F∞(λ) < Fs. We show that in the limiting case λ = λc, dividing bounded and
unbounded motion, as z → ∞ the plume asymptotes to a new similarity solution
of the second kind which describes the motion of a plume in a non-uniformly
stratified environment. These similarity solutions are unstable in the sense that small
perturbations to the initial conditions result in very different behaviour far from the
source.

Analogous results for an instantaneous release of buoyant fluid from a point
source, which forms a thermal, are also presented. The model is applied to describe
the motion of plumes and thermals in the upper ocean and in naturally ventilated
buildings since in both cases the stratification is typically non-uniform.

1. Introduction
The behaviour of continuous and instantaneous releases of buoyant fluid, which are

commonly referred to as plumes and thermals, rising from a point source of buoyancy
is well understood. For turbulently convecting fluid far from an isolated (continuous)
source of buoyancy in an unstratified medium, Zeldovich (1937) demonstrated the
existence of asymptotic, self-similar solutions for the velocity and density within the
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isolated ‘plume’. The classical models of Morton, Taylor & Turner (1956) further
describe the motion of both plumes and thermals in unstratified and uniformly
stratified environments, and have been successfully tested with controlled laboratory
experiments and naturally occurring examples over a wide range of scales (Briggs
1969; Turner 1986; Woods 1995). However, there are a number of interesting situations
in which buoyant fluid may be released into an environment in which the density
stratification is non-uniform. For example, the combination of heat sources and
air vents in buildings often leads to non-uniform thermal stratification through
filling-box-type processes (Baines & Turner 1969; Linden & Cooper 1996). Another
example concerns ocean–atmosphere interactions which often lead to elevated water
temperatures above the thermocline, and hence much larger stratification than in
deeper waters (Emery, Lee & Magaard 1984; Morison et al. 1992). The elevated
stratification near the surface may arrest the descent of sewage discharges, dense
turbidity currents and the dense saline plumes produced during sea-ice formation
(Morison et al. 1992). The effects of non-uniform stratification may also be of
importance in the lower atmosphere in still conditions, where inversions, or regions
of high stratification develop just above the ground (Gill 1982).

In order to examine the effects of non-uniform stratification, in §2 we generalize
the model first developed by Morton et al. (1956) to describe the ascent of a turbulent
buoyant plume in an environment in which the buoyancy frequency varies with
height, N(z). Morton et al. (1956) identified that the motion of a turbulent plume in
an unstratified environment is a self-similar function of height z, and so it is natural
to examine the special class of ambient stable stratifications described by

N2(z) = N2
s (z/zs)

β, (1.1)

where N2
s > 0. If we consider a plume whose source is located at z = zs then Ns

represents the buoyancy frequency at the source, and zs represents the characteristic
length scale of variability of the stratification.

In §3, we use the generalized model to illustrate how the behaviour of a turbulent
buoyant plume, of given initial buoyancy flux, varies with zs and β, identifying
conditions under which the motion is bounded and unbounded. We then present a
new family of similarity solutions associated with the transition between bounded
and unbounded motion. In §5, we present some analogous results for discrete thermal
clouds. In §6, we apply the results of the model to several situations of practical
interest and we draw some conclusions in §7. For completeness, in an Appendix
we illustrate analogous results for turbulent plumes and thermals rising through an
environment in which the stratification decays exponentially with height.

2. A model of a turbulent buoyant plume in a non-uniform environment
Following Morton et al. (1956), we consider an environment in which the variations

in density are small compared to the background density, so that we may adopt the
Boussinesq approximation. In this limit, the mass flux, πρsQ, momentum flux, πρsM,
and buoyancy flux, πρsF , may be defined by

Q = 2

∫ ∞
0

wrdr; (2.1)

M = 2

∫ ∞
0

w2rdr; (2.2)
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F =
2g

ρs

∫ ∞
0

u∆ρrdr, (2.3)

where w is the vertical velocity within the plume, ∆ρ the density deficit of the plume
relative to the environment, ρs is a reference density, and the integral is over the
whole cross-sectional area of the plume. We adopt the entrainment assumption that
the horizontal inflow velocity ue is linearly related to the vertical velocity w within
the plume:

ue = εpw. (2.4)

The entrainment constant εp has been determined experimentally to have value ∼ 0.09
for both uniform and uniformly stratified environments (Morton et al. 1956; Turner
1986). The equations for the conservation of mass, momentum and buoyancy averaged
over a horizontal cross-section may then be expressed in the form

dQ

dz
= 2εpM

1/2, (2.5)

dM

dz
=
FQ

M
, (2.6)

dF

dz
= Q

g

ρs

dρ̄

dz
, (2.7)

where ρ̄ represents the density of the environment and ρs is a fixed reference density.
Adopting the relation (1.1) for the buoyancy frequency N of the environment, and
remembering that the buoyancy frequency is defined as

N2(z) = − g
ρs

dρ̄

dz
, (2.8)

(2.7) may be re-written as

dF

dz
= −QN2

s (z/zs)
β. (2.9)

Morton et al. (1956) considered the case in which the buoyancy frequency is a
constant, β = 0, in which case a pure point source plume, with zero initial volume
flux and specific momentum flux, ascends a finite height Hmp given in terms of the
source specific buoyancy flux Fs by

Hmp = 2.57Hp, (2.10)

where

Hp ≡ (2εp)
−1/2Fs

1/4N−3/4
s . (2.11)

Hp is a characteristic length scale of the plume height of rise which may be used to
define non-dimensional variables

F̂ =
F

Fs
, Q̂ =

Q

(2εp)4/3F
1/3
s H

5/3
p

, M̂ =
M

(2εp)2/3F
2/3
s H

4/3
p

, (2.12a–c)

with

ẑ =
z

Hp

and N̂ =
N

Ns

. (2.13a,b)

These lead to the non-dimensional governing equations (cf. (2.5)–(2.7))

d

dẑ
Q̂ = M̂1/2, M̂

d

dẑ
M̂ = F̂Q̂,

d

dẑ
F̂ = −Q̂N̂2, N̂2 = (λẑ)β. (2.14a–d)
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The parameter λ represents the ratio of the scale height of rise of a plume with
initial specific buoyancy flux Fs in a uniformly stratified environment with buoyancy
frequency Ns, to zs, the scale height of the environmental stratification:

λ ≡ Hp

zs
. (2.15)

In the remainder of this paper, we work with these non-dimensional variables, and so,
for convenience, we now drop the hat notation to denote a non-dimensional quantity;
all quantities are non-dimensional unless explicitly stated otherwise.

3. Sensitivity of the plume rise to ambient stratification
Equation (2.14c) implies that, in a stably stratified environment, whatever the initial

volume and specific momentum fluxes, the specific buoyancy flux decreases with height
owing to the entrainment of relatively dense ambient fluid. If the specific buoyancy
flux decreases to zero and becomes negative, then the plume specific momentum flux
decreases and the motion eventually comes to rest at a finite height; otherwise, the
plume continues rising.

In order to compare the predictions of the model directly with the calculations
of Morton et al. (1956) for a point-source plume rising in a uniformly stratified
environment, we choose initial conditions corresponding to a point-source plume,

Q = 0, M = 0, F = 1 at z = 1/λ . (3.1)

The non-dimensional height of rise,

hp(λ, β) = zp − 1/λ, (3.2)

is defined as the height at which the specific momentum flux M(zp) = 0. The initial
position, z = 1/λ, has been chosen so that both F and N = 1 (see (2.12) and (2.13)).
In the special case β = 0, corresponding to a uniformly stratified environment,

hp ≡ hmp = 2.57. (3.3)

In figure 1, we illustrate how the height of rise of a plume varies with β for several
values of λ, comparing the actual height of rise to this classical result (see Morton et
al. 1956).

3.1. Increasing stratification: β > 0

In the case β > 0, the ambient stratification increases with height and so the plume
height is smaller than for a uniformly stratified environment, hp < hmp. For small
values of λ(� 1), the scale over which the stratification increases, zs, is appreciably
greater than the height of rise of the plume through a uniformly stratified environment
with buoyancy frequency equal to that at the source. Therefore, the plume does not
rise sufficiently far to experience the increasing stratification, and the decrease of the
plume height is relatively small, hp ∼ hmp. However, for larger values of λ (� 1), the
environmental stratification increases much more rapidly, and so the plume height
becomes considerably smaller.

3.2. Decreasing stratification: β < 0

For β < 0, the ambient stratification becomes progressively weaker with height and
so plumes tend to rise higher than in a uniformly stratified environment, hp > hmp.
For λ � 1, the stratification decreases rapidly over the height to which the plume



Gravitational convection in a non-uniformly stratified environment 233

4

3

2

1

0
–4 –3 –2 –1 0 1 2 3 4

Stratification exponent, b

D
im

en
si

on
le

ss
 h

ei
gh

t, 
z/

h m
p

10.0
λ = 1.0

0.1

Figure 1. Non-dimensional height of rise of turbulent buoyant plume in an environment of
non-uniform stratification (defined by (1.1)) as a function of β. Curves are given for three values
of λ (defined by equation (2.15)), namely 0.1, 1.0 and 10.0. For reference, the plume heights have
been scaled relative to the height of rise Hmp (defined by (2.10)) of a plume rising in a uniformly
stratified environment (cf. Zeldovich 1937; Morton et al. 1956).

would rise if the environment were of uniform stratification. As a result, the plume
rises much higher, hp � hmp. In contrast, for λ � 1, the plume does not experience
a significant change in the stratification before it has reached its maximum height of
rise, and so hp ∼ hmp.

3.3. Bounded and unbounded motion for β < −8.3

Further numerical calculations have identified that for each value of β < −8/3, there
is a critical value λ = λc(β), such that for λ > λc(β), the plume is unbounded even
though it is rising through a stratified environment. This is because the stratification
decreases to very small values some distance above the source so that the ambient
density becomes nearly uniform and the material can therefore remain buoyant even
though it is entraining relatively dense fluid near the source. In fact, the motion
asymptotes to that of a buoyant plume in an unstratified environment. However,
owing to the stratification, the asymptotic specific buoyancy flux, F∞(λ), is smaller
than that at the source. This implies that as z → ∞, F∞(λ) < 1 while the volume flux
and specific momentum fluxes have the asymptotic form (cf. Morton et al. 1956)

Q∞ ∼
3

5

(
9

20

)1/3

F1/3
∞ (λ)z5/3, (3.4)

M∞ ∼
(

9

20

)2/3

F2/3
∞ (λ)z4/3, (3.5)

for z � 1. Numerical solution of the governing equations (2.14a–c) shows that
F∞(λ) → 1 as λ → ∞ and that F∞(λ) → 0 as λ → λc(β) from above, as shown in
figure 2(a).

The calculations have also identified that for λ < λc(β), the plume motion is
bounded (figure 2b), while the total height of rise increases as λ→ λc(β) from below.
This is because the stratification decays so slowly with height that the plume specific
buoyancy flux falls to zero before the stratification has decayed sufficiently.

In figure 3, we show how the critical value λc(β) at which plumes are just able to
overcome the stratification and become unbounded varies with β. It is seen that as
|β| increases, and the stratification decays more rapidly with height, the critical value
λc becomes smaller.
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Figure 2. (a) The asymptotic non-dimensional specific buoyancy flux, F∞ < 1, as a function of λ,
for λ > λc. (b) Variation of the height of rise of a buoyant plume with λ < λc as a function of λ.
Curves are given for β = −2.5,−2.75, −3.0, −3.25, −3.5 and −3.75.
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Figure 3. Variation of the critical value λc separating bounded and unbounded solutions as a
function of β.

Essentially, as the rate at which stratification decays with height increases, the
maximum scale height of the stratification, zs, for which plumes of a given specific
buoyancy flux are unbounded, also increases.

The qualitative difference between bounded and unbounded plumes, which arises
for β < −8/3, is of particular interest. In the next section, we show that, for
−4 < β < −8/3, there is a new family of similarity solutions of (2.14) in which the
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specific buoyancy flux decays monotonically to zero as z → ∞. In the special limit
λ = λc, the numerical solutions of this section asymptote towards these similarity
solutions.

4. Self-similar plumes in non-uniform environments
Direct calculation shows that when −4 < β < −8/3, there is a family of similarity

solutions, of the second kind, for (2.14) of the form

Qu(z) = Q0z
q, Mu(z) = M0z

m, Fu(z) = F0z
f, (4.1a–c)

where

Q0 =
λβ/2

(|f|mq4)1/2
, M0 =

λβ

(|f|mq2)
, F0 =

λ3β/2

(|f|3mq4)1/2
, (4.2a–c)

and

q =
(β + 6)

2
, m = β + 4, f =

(3β + 8)

2
. (4.3a–c)

Before describing these solutions in more detail, it is interesting to note that
Batchelor (1954) considered the related, but distinct problem of motion through a
statically unstable ambient, N2

s < 0. He presented a somewhat similar family of
similarity solutions, but valid for β > −8/3, and which had zero buoyancy flux at
z = 0. He interpreted his solutions as a mathematical demonstration of the fact that
‘the development of a turbulent heat plume in an unstable atmosphere does not need
a heat source’. We, conversely, are interested in statically stable environments, for
which these similarity solutions apply when −4 < β < −8/3, and which have finite
buoyancy frequency and specific buoyancy flux at the source, z = 1/λ.

Note that except for the limits β = −4 and −8/3, m and q are positive, while f
is negative, so that Fu decreases while both Mu and Qu increase with z. Such plumes
are able to propagate indefinitely because the stratification decays sufficiently rapidly
that the net specific buoyancy flux always remains positive.

4.1. Limit of an unstratified environment, β = −8/3

In the limit β = −8/3, f → 0, and so for finite λ, F0 and M0 → ∞. However, in
the special case λf3/8 = O(1) as f → 0, the solution coincides with that for a plume
rising in an unstratified environment with finite constant specific buoyancy flux F0

(Zeldovich 1937; Morton et al. 1956)

Q0 =
3

5

(
9F0

20

)1/3

z5/3, M0 =

(
9F0

20

)2/3

z4/3. (4.4a,b)

This has the same form as the asymptotic solution defined by equations (3.4) and
(3.5) discussed in the previous section.

4.2. Limit of a momentum jet, β = −4

The limit β = −4 is also singular for finite λ. However, in the special case λm1/4 = O(1)
as λ→ 0, then the similarity solution corresponds to a turbulent momentum jet rising
through an unstratified environment and the solution may be expressed in the simple
form

Q0 = z, M0 = 1, F0 = 0. (4.5a–c)
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Figure 4. Variation of the local value of λl(z) (defined by (4.16)) calculated in the numerical
solutions for a plume rising in a stably stratified ambient fluid with β = −3.5 for three different
values of λ. For this value of β, λc is approximately 0.543, and λs = 0.897. For λ < λc, the plume is
bounded and so λl passes through zero. For λ > λc the motion is unbounded, and λl → ∞, while
in the critical case λ = λc the λ(z)→ λs (shown by a vertical dashed line) and the plume converges
towards the similarity solution, defined by (4.1).

4.3. Comparison of the similarity solutions with the numerical solutions for
−4 < β < −8/3

The numerical solutions of §3, with λ = λc, represent the distinct limit in which
the motion of the plume is unbounded, but for which the specific buoyancy flux
decays towards zero as z → ∞ (figure 2). We might therefore expect that these
solutions coincide with the similarity solutions (4.1) as z → ∞. In order to compare
the numerical solutions with the similarity solutions,and in particular to determine
whether they converge towards the similarity solution with height, it is convenient to
define the quantity

λl(z) =
F1/4(z)N−3/4(z)

z
= F1/4(z)λ−3β/8z−1−3β/8. (4.6)

For general λ, in the numerical solutions of §3, λl(z) evolves with height in the plume,
but, for the self-similar solutions, λl has the constant value

λs = (q4m|f|3)−1/8 (4.7)

at all heights.
For the numerical calculations of §3, we find three types of behaviour of λl(z),

depending on the initial value of λ (figure 4). When λ < λc at the source, we find that as
the motion becomes suppressed by the stratification, λl decreases to zero at the height
at which the plume becomes dense. Conversely, if λ > λc at the source, then as z →∞,
λl increases indefinitely with height. For the critical condition λ = λc at the source, the
numerical calculations suggest that as z → ∞, λl → λs again and so these particular
plume solutions do converge to the similarity solutions given by (4.1), once the
information about the initial conditions is lost through entrainment, as expected for

z � (λ3β/2
c λ4

s )
1/|f|. (4.8)

In figure 5, we show how M0 (solid line) varies with β, in the range −4 < β < −8/3
for these critical solutions with λ = λc. The figure also shows (with a dashed line) the
variation of the asymptotic specific momentum flux M∞ (as defined by (4.22) in §4.6)
with β for flows (with β < −4) where the similarity solutions defined by (4.1) cannot



Gravitational convection in a non-uniformly stratified environment 237

–2–4–6–8–10–12
0

1

2

3

4

5

S
pe

ci
fi

c 
m

om
en

tu
m

 f
lu

x

β

M∞
M0

Figure 5. Variation of M0 (defined by (4.2b)) for −4 < β < −8/3 (solid line) and M∞ (defined by
(4.22)) for β < −4 (dashed line) as a function of β in the limiting case λ = λc.

exist, but where λ is equal to the critical value λc at the source. These asymptotic
critical similarity solutions are discussed in more detail below.

Since the limit of λl as z → ∞ diverges from λs, if the value of λ is perturbed
slightly from λc, then we deduce that the similarity solutions of §4.1 are unstable. In
the next subsection we confirm this by analysing the stability of the solutions to small
pertubations in the initial conditions.

4.4. Stability of the similarity solutions

To examine the stability of the similarity solutions defined by (4.1) to small pertur-
bations in the initial conditions, it is convenient to scale the specific buoyancy flux F ,
the specific momentum flux M, and the volume flux Q with the similarity solutions
(4.1), leading to the quantities

Q̄(z) =
Q(z)

Qu(z)
; M̄(z) =

M(z)

Mu(z)
; F̄(z) =

F(z)

Fu(z)
. (4.9a–c)

Defining a new independent variable

ξ = ln z, (4.10)

the governing equations (2.14a–c) become autonomous and independent of λc:

d

dξ
Q̄ = −q(Q̄− M̄1/2), (4.11)

d

dξ
M̄ = −m

(
M̄ − F̄Q̄

M̄

)
, (4.12)

d

dξ
F̄ = −f(F̄ − Q̄). (4.13)

The similarity solution corresponds to the unique non-trivial fixed point of the system
defined by (4.11)–(4.13),

Q̄ = M̄ = F̄ = 1. (4.14)

To analyse the stability of the similarity solution, we consider small perturbations
about the fixed point defined as

(Q̄, M̄, F̄) = (1, 1, 1) + δ(Q′,M ′, F ′), (4.15)
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Figure 6. Variation of the eigenvalues of the stability matrix A (defined in (4.16)) with β.

where δ � 1. Linearizing (4.11)–(4.13), we find that Q′, M ′ and F ′ satisfy the relations

dQ′

dξ

dM ′

dξ

dF ′

dξ


=


− q q/2 0

m − 2m m

f 0 − f




Q′

M ′

F ′

 ≡ A


Q′

M ′

F ′

 . (4.16)

Assuming that the perturbations are proportional to exp(νξ), then we find that the
eigenvalues ν1, ν2, ν3, of the stability matrix A satisfy

ν3 + (2m+ q + f)ν2 +

(
3mq

2
+ f[2m+ q]

)
ν + fmq = 0. (4.17)

Figure 6 illustrates the variation of νi with β for −4 6 β 6 −8/3. Except in the
limiting case β = −8/3, one eigenvalue (which we shall refer to as ν1) is positive,
while the other two (ν2 and ν3) are negative.

Each of these eigenvalues has an associated eigenvector, e1, e2, and e3, say in
the space of volume, specific momentum and specific buoyancy fluxes (Q,M, F). We
deduce that, unless β = −8/3, any perturbation which includes a component of e1

is unstable, and the motion of the associated plume diverges from the similarity
solution, as suggested by the numerical calculations in §3 and figure 4.

Furthermore, any small perturbation about (1, 1, 1) on plane Π spanned by e2 and
e3 is stable, and therefore, in physical space, the motion asymptotes to a similarity
solution of the form defined by (4.1). If we define S to be the surface in (Q,M, F)-space
which divides bounded and unbounded motion, then Π is tangent to this surface at
(1, 1, 1).

4.5. The special case β = −8/3

As noted above, in the limit β = −8/3, we recover the classical similarity solutions of
Morton et al. (1956). Unlike the solutions with β < −8/3, in this special case ν1 = 0
and so the system has become marginally stable with eigenvalues

ν1 = 0, ν2 = −1, ν3 = −10/3. (4.18a–c)
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and associated eigenvectors

e1 =

(
1
2
3

)
, e2 =

(
5/3
4/3
0

)
, e3 =

(
1
−2
0

)
. (4.19a–c)

As a result of this marginal stability, for any initial perturbation in the direction
e1, the system adjusts to a solution identical to the original solution, except that
there is a simple rescaling of the volume flux and the specific momentum flux in
terms of the perturbation to the specific buoyancy flux. The eigenvector e2 now has
associated eigenvalue ν2 = −1, and so perturbations of this form decay with distance
like exp(−ξ) = 1/z. Therefore, for such a perturbation, in physical space, the volume
flux and specific momentum flux have the form

Q ∼ z5/3

(
1 +

5δ

3z

)
, (4.20)

M ∼ z4/3

(
1 +

4δ

3z

)
. (4.21)

This is exactly the linearized form of the solution for a plume with finite initial
volume flux and/or finite initial specific momentum flux rising from a real source
and asymptoting to a ‘pure’ plume which appears to be rising from a point source
at height −δ, the so-called ‘effective origin’ (see Caulfield & Woods 1995 for a fuller
discussion). Perturbations along vector e3 correspond to a perturbation with infinite
negative initial momentum flux which is unphysical.

This analysis provides some insight into why the similarity solution for a buoyant
plume rising in an unstratified environment is marginally stable, and may therefore
arise in nature or the laboratory. In contrast, it also suggests that in an environment
of decreasing stratification, β < −8/3, the similarity solutions are unstable, and will
not be seen in the laboratory: instead the motion is either bounded, or tends to the
solution for a plume rising through an unstratified environment.

4.6. Asymptotic similarity solutions when λ = λc for β < −4

The similarity solutions (4.1), which only exist for −4 < β < −8/3, may be identified
with the boundary between bounded and unbounded plumes. However, if λ > 0
then when β = −4, these similarity solutions (4.1) become degenerate and are only
approached at an infinite distance from the source of (finite) initial specific buoyancy
flux, where they are predicted to have constant but unbounded specific momentum
flux. Thus we expect a different asymptotic regime to describe the critical plume
solutions with λ = λc and β < −4.

When β < −4 the numerical solutions with λ = λc are unbounded with the specific
buoyancy flux F → 0 as z → ∞. Therefore, we expect that they also asymptote to a
self-similar form. Although equations (2.14a–d) have no exact self-similar solutions
for β < −4, it may be shown that, for each λc, there is a family of asymptotic
similarity solutions given by

M 'M∞(λc), (4.22)

Q∞(z) ≡ Qa(z) 'M1/2
∞ z, (4.23)

F∞(z) ≡ Fa(z) '
λβcM

1/2
∞ zβ+2

|β + 2| , (4.24)



240 C. P. Caulfield and A. W. Woods

1000

100

10
1.5 2.0 2.5 3.0 3.5 4.0

β = –7 – 6 –5

(Asymptotic dimensionless momentum flux)1/2

D
im

en
si

on
le

ss
 h

ei
gh

t

Figure 7. Comparison of |β+2|λ−βc Fz|β+2| (solid line), M1/2 (dashed line) and Q/z (dotted line) as a
function of z for three different values of β in the case λ = λc with β < −4 (§4.6). Note that in each
case the three quantities are asymptoting to a constant, indicative of the validity of the asymptotic
solution (4.22)–(4.24).

where M∞ is constant. These solutions apply provided z is sufficiently large

z �
(
M∞|β + 2||β + 4|

λ
|β|
c

)1/|β+4|

. (4.25)

We have verified numerically that, in the case λ = λc, the numerical solutions of §3
asymptote to the self-similar form (4.22)–(4.24) by determining that, as z →∞,

M1/2, Q/z, |β + 2|λ−βc Fz|β+2| →M1/2
∞ . (4.26)

We show this convergence for three different values of β in figure 7. The results
shown in figure 2 also confirm that for λ < λc the numerical solutions are bounded
and hence do not converge to these asymptotic similarity solutions, while for λ > λc
the numerical solutions are unbounded and the specific buoyancy flux converges to a
finite positive value as z →∞ thereby again diverging from the asymptotic similarity
solutions. In figure 5 we also show (dashed line) the variation of M∞ as a function
of β in the case λ = λc(β). It is seen that M∞ decays monotonically to zero as β
decreases to values smaller than −4.

Also note that for this solution, λl(z)→∞ as z →∞ (see (4.6)), consistent with the
result λs → ∞ as β → −4 (4.7). Also, as β → −4 from below, (4.25) implies that the
solution is only formally valid at infinity, which is consistent with the limit for (4.8)
as β → −4 from above.

Physically these asymptotic similarity solutions correspond to plumes which have
just sufficient specific buoyancy flux to propagate through the strongly stratified region
near the source, while continuing to gain specific momentum flux and volume flux.
Then, as they continue to propagate far from the source, where the ambient fluid is
very weakly stratified, the specific momentum flux becomes essentially constant, as
there is very little density difference between the ambient and plume fluid, while the
volume flux continues to increase through entrainment.

As can be seen from figure 3, as β decreases below −4, λc also decreases, and is
always significantly less than unity. This implies that the stratification decreases more
slowly over the height to which the plume would rise if the environment were of
uniform stratification. Therefore, the loss of specific buoyancy flux occurs nearer the
source as β decreases for these critical solutions with λ = λc. Above this region, the
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specific momentum flux of the plume is expected to remain approximately constant
and so the value of M∞ decreases with β (figure 5).

As with the similarity solutions (4.1), the asymptotic solutions defined by (4.22)–
(4.24) are also unstable to perturbations in the initial conditions; indeed, we have seen
that for λ < λc the motion is bounded, whereas for λ > λc, the plume asymptotes to
the motion of a plume of fixed specific buoyancy flux rising through an unstratified
environment.

5. Thermal motion
When there is an instantaneous and finite release of buoyancy, a discrete thermal

cloud develops above the source. In their seminal contribution, Morton et al. (1956)
also developed a model of thermals rising in both uniform and uniformly stratified
environments. Following the approach of §§2–4, we now extend this model to describe
the ascent of thermals through a non-uniformly stratified environment.

The motion of a thermal may be described by the (dimensional) equations

dV

dz
= 3εtV

2/3,
dP

dz
=

2

3

BV

P
,

dB

dz
= −VN2, (5.1a–c)

where εt ∼ 0.25 is the thermal entrainment constant (Morton et al. 1956), and the
volume V , specific momentum P , and specific buoyancy B of the thermal are defined
in terms of the characteristic velocity w, the effective radius b and the reduced gravity
g′ according to (Morton et al. 1956)

V ≡ b3, P ≡ b3w, B ≡ b3g′. (5.2a–c)

Following the earlier parts of the paper, we now consider the behaviour of thermals
rising through an ambient with stratification of the form

N2 = N2
s (z/zs)

β. (5.3)

In the special case N2 = N2
s , a constant, the maximum height of rise of a thermal

with initial conditions

V = P = 0, B = Bs at z = 0 (5.4)

is (Morton et al. 1956)

Hmt = 63/4Ht, (5.5)

where Ht is the characteristic height of rise in a uniformly stratified environment

Ht ≡ (3εt)
−3/4 B1/4

s N−1/2
s . (5.6)

Ht has been chosen for convenience to define non-dimensional variables

B̂ =
B

Bs
, V̂ =

V

(3εtHt)3
, P̂ =

P

(18ε3
t Bs)

1/2
H2
t

, ẑ =
z

Ht

, N̂ =
N

Ns

, (5.7a–e)

which yield the simple non-dimensional form for the governing equations

d

dẑ
V̂ = V̂ 2/3, P̂

d

dẑ
P̂ = B̂V̂ ,

d

dẑ
B̂ = −V̂ N̂2, N̂2 = (µẑ)β. (5.8a–d)

In the remainder of this section of the paper, we work with non-dimensional quantities,
and therefore for convenience, again we drop the hat notation.
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The parameter µ is the direct analogue of the parameter λ for plumes (2.15),
and represents the ratio of the height of rise of a thermal in a uniformly stratified
environment to the length scale of variation of the buoyancy frequency

µ =
Ht

zs
. (5.9)

5.1. Exact solutions for a point-source thermal

As in §3, to compare our results with the classical results of Morton et al. (1956),
we define the thermal source to be at the point z = 1/µ, and we focus on the initial
conditions

B = 1, V = 0, P = 0. (5.10)

Given these boundary conditions, (5.8a–d) have a straightforward, but algebraically
complex, analytical solution. This analytical solution enables us to derive exactly
analogous results for thermal motion to the numerically and asymptotically calculated
results for the buoyant plumes discussed in the previous sections.

Equation (5.8a) can be integrated, using (5.10), to obtain

V =

(
z

3
− 1

3µ

)3

. (5.11)

Substituting (5.11) into (5.8c) (using (5.8d)) enables us to get a polynomial solution
for B, which when substituted into (5.8b) along with (5.11) allows us to obtain a
closed form solution for P 2. Provided β 6= −1,−2,−3, . . .− 8, the exact solution takes
the form

P =

(
Pc +

Bc

54

(
z − 1

µ

)4

+ Pt

)1/2

, (5.12)

B = Bc + Bt, (5.13)

where

Pc =
280

81µ8(β + 1)(β + 2)(β + 3)(β + 4)(β + 5)(β + 6)(β + 7)(β + 8)
, (5.14)

Pt = −2zβ+2µβ

729

[
z6

(β + 4)(β + 8)
− 3(2β + 7)z5

µ(β + 3)(β + 4)(β + 7)

+
3(5β2 + 30β + 42)z4

µ2(β + 2)(β + 3)(β + 4)(β + 6)

− 2(5β2 + 25β + 21)(2β + 5)z3

µ3(β + 1)(β + 2)(β + 3)(β + 4)(β + 5)
,

+
3(5β2 + 20β + 17)z2

µ4(β + 1)(β + 2)(β + 3)(β + 4)

− 3(2β + 3)z

µ5(β + 1)(β + 2)(β + 3)
+

1

µ6(β + 1)(β + 2)

]
, (5.15)

Bc = 1− 2

9µ4(β + 1)(β + 2)(β + 3)(β + 4)
, (5.16)

Bt = −µ
β

27

[
zβ+4

(β + 4)
− 3zβ+3

µ(β + 3)
+

3zβ+2

µ2(β + 2)
− zβ+1

µ3(β + 1)

]
. (5.17)
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Figure 8. Non-dimensional height of rise of a turbulent buoyant thermal in an environment of
non-uniform stratification (defined by (1.1)) as a function of β. Curves are given for three values of
µ (defined by equation (5.9)), namely 0.1, 1.0 and 10.0. For reference, the plume heights have been
scaled relative to the height of rise Hmt (defined by (5.5)) of a thermal rising in a uniformly stratified
environment (cf. Morton et al. 1956).
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Figure 9. Variation of the critical value µc (defined by (5.18)) separating bounded and unbounded
solutions as a function of β.

In figure 8, we illustrate how the height of rise of the thermal, ht, defined as the point
at which P (ht) = 0, varies with β. As expected, the qualitative characteristics of this
plot are very similar to those for turbulent plumes (figure 1).

If β > −4, then both Bt and Pt are negative, and increase in amplitude without
limit as z increases, and so the thermal will eventually become dense and stop at
some finite height. On the other hand, for rapidly decaying ambient stratifications,
β < −4, (5.17) implies that Bt is positive, and decays towards zero as z → ∞, and
hence if Bc > 0 the thermal is unbounded. The condition that Bc > 0 implies that for
µ greater than a critical value µc, defined as

µc(β) ≡
(

2

9(β + 1)(β + 2)(β + 3)(β + 4)

)1/4

, (5.18)

then the thermal is unbounded. The value of µc is plotted in figure 9 as a function of β.
The analytical solution given above enables us to determine directly the asymptotic

behaviour of the unbounded thermals in both the cases µ > µc and µ = µc, as well
as some properties of the bounded thermals, µ < µc. For β < −4, Pc + Pt increases
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as z increases for all z. However, since Pt = O(zβ+8), then for sufficiently large z the
specific momentum is totally dominated by the term involving Bc, which is O(z4).

(i) µ < µc. In this case Bc < 0, and so the motion is bounded, and the thermal is
only able to ascend to a finite height, ht(µ). Direct calculations identify that as µ→ µc
from below, ht(µ) → ∞, again in a directly analogous fashion to that for a plume
(figure 2b).

(ii) µ > µc. If the motion is unbounded, then the solution (5.11)–(5.17) identifies
that, as z → ∞, the motion asymptotes to that of a self-similar thermal in an
unstratified environment (cf. Morton et al. 1956), with total specific buoyancy Bc,
specific momentum

Pa '
B

1/2
c z2

3
√

6
, (5.19)

and volume

Va '
z3

27
. (5.20)

The expression (5.16) identifies that as µ→ µc from above, Bc → 0; as expected, this
result is directly analogous to that for a plume (figure 2a).

(iii) µ = µc. With the exact solution (5.11)–(5.17), we can deduce the asymptotic
behaviour of the critical solutions with µ = µc directly. Asymptotically the volume
has the value given by (5.20) and the specific buoyancy for large z approaches

Ba ' −
µβc z

β+4

27(β + 4)
. (5.21)

In this case, we need to distinguish between two different circumstances, depending
on the asymptotic properties of the term Pt defined by (5.15).

If −8 < β < −4, Pt is positive for large z, and grows in magnitude with increasing
z so that asymptotically

Pa '
√

2µ
β/2
c z(β+8)/2

27[|β + 4|(β + 8)]
. (5.22)

Alternatively, when β < −8, then Pt is negative, but decays towards zero with
increasing z, and so P asymptotes to the constant value (using (5.12), (5.14) and
(5.18))

Pa '
(

70(β + 1)(β + 2)(β + 3)(β + 4)

(β + 5)(β + 6)(β + 7)(β + 8)

)1/2

, (5.23)

Thus the thermal approaches the behaviour of a pure momentum thermal in an
unstratified environment. As for the plume (§4.6), this asymptotic momentum Pa →∞
as β → −8, and decreases monotonically as β decreases for β < −8.

5.2. Similarity solutions for thermals

As with turbulent plumes, the boundary between bounded and unbounded motion
µ = µc is associated with a family of (unstable) similarity solutions which coincide
with the asymptotic form of the critical full solution, given by (5.20)–(5.22). However,
for β in the range −8 < β < −4, these similarity solutions exist for general µ and may
be found by direct substitution into the governing equations (5.8a–d). The solutions
are given by

Vu =
z3

27
, Pu =

(
2

3

)1/2
µβ/2µ2

s z
(β+8)/2

3(β + 8)1/2
, Bu = µβµ4

s z
β+4, (5.24a–c)
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where

µs =

(
1

27|β + 4|

)1/4

. (5.25)

In the limiting case, β = −4, these similarity solutions become unbounded except
in the special case µ(β + 4)1/2 = 0(1) when they coincide with the solutions for a
buoyant thermal rising in an unstratified environment (cf. Morton et al. 1956), given
by (5.19) and (5.20), with B = Bc a constant. In the other limit, β → −8, the solution
again diverges, except for the special case µ(β + 8)1/8 = O(1), when the similarity
solution corresponds to a forced neutrally buoyant instantaneous release of fluid, i.e.
P = Pc a constant and B = 0.

By following a similar procedure to that described in §4, it may be shown that small
perturbations to the similarity solutions (5.24) for a buoyant thermal are unstable,
except in the limiting case β = −4, for which the similarity solution is neutrally
stable. Essentially, a general small perturbation away from the exact initial conditions
for the similarity solution leads to either bounded motion or asymptotes towards
the unbounded motion of a thermal of constant specific buoyancy in a uniform
environment. Furthermore, although the solution (5.11)–(5.17) asymptotes to the self-
similar solution (5.24) as z → ∞ when µ = µc, if µ 6= µc, then the two solutions
diverge. This may be seen by considering the evolution with height of the local
thermal property

µl(z) =
B1/4N(z)−1/2

z
(5.26)

(cf. the quantity λl(z), defined by (4.6)). From the solution (5.11)–(5.17), we see that if
µ < µc then µl(z) decreases, and becomes zero when the thermal reaches the neutral
buoyancy height. On the other hand, if µ > µc then, since B → Bc > 0 (as defined by
(5.16)),

µl ' B1/4
c µ−β/4z−(β+4)/4 →∞, (5.27)

provided β < −4. However, in the special case µ = µc, B ' Ba as z → ∞, as defined
in equation (5.21). Therefore, µl → µs as z → ∞ and the solution asymptotes to a
self-similar solution of the form given by (5.24) for −8 < β < −4.

Finally, note that for β < −8, the solution (5.11)–(5.17) with µ = µc asymptotes to
the asymptotic similarity solution in which P is given by the constant value (5.23),
and B is given by (5.21).

6. Applications and discussion
Recognition of the critical value λc dividing bounded and unbounded plumes when

β 6 −8/3 is of particular importance in understanding the fate of real plumes
in environments of non-uniform stratification. In order to apply the results to real
problems, it is useful to return to dimensional variables, and this leads to the condition
that, for a plume to continue propagating through a region of decaying stratification,

Fs > 25/2ε2
pN

3
s (λc(β)zs)

4 . (6.1)

This relation has the simple physical interpretation that when the vertical scale over
which the stratification decays is smaller than the scale over which the plume would
rise in an environment with stratification equal to that at the source, the plume is
able to continue rising indefinitely, even though the environment is stably stratified
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at all heights. Also note that for very slowly decaying stratification, when β > −8/3,
the plume is always bounded.

In §1, we mentioned a number of situations in which the ambient stratification
is non-uniform. In such situations, the height of rise of a plume may be very
different from that estimated using the solutions of Morton et al. (1956) for a
uniform environment, as can be seen in figure 1. In the oceanic context, an important
application concerns the downward propagation of turbidity currents on continental
shelves, plumes of dense brine rejected as sea-ice forms in polar regions (Morison
et al. 1992) and plumes of dense waste material deposited into the ocean. As an
example, we may approximate the variation of the buoyancy frequency with depth in
the upper 500 m of the subtropical Northern Summer Pacific as presented by Emery
et al. (1984) with the power law,

N2 = N2
s (z/zs)

−2.75, (6.2)

with N2
s = 0.0004 s−2 and zs ∼ 100 m. Substituting these values into expression (6.1),

and reading an appropriate value of λc from figure 3, we deduce that a sinking plume
would require a specific buoyancy flux in excess of about Fs ∼ 200 m4 s−3 in order
to penetrate through the thermocline into the less-stratified deep ocean. For a typical
reduced gravity g′ of 0.1 m s−2, this requires an actual volume flux of 6000 m3s−1. If
material is injected more slowly, then the specific buoyancy flux will be insufficient
for the plume to penetrate through the thermocline into the deeper ocean.

The density profile in ventilated rooms often develops non-uniform stratification as
a result of combinations of heat sources and sinks at different positions in the room
(Lane-Serff 1989; Linden & Cooper 1996; Baines & Turner 1969). Figure 1 illustrates
that the height of penetration of a plume can vary by over an order of magnitude if
the stratification in the room is non-uniform. As a result of this variation, in naturally
ventilated buildings, the depth of mixed layers and the dispersal of smoke can vary
enormously depending on the strength and location of heat sources. Typical values
of vertical temperature variation within a room are of the order of 1–3 K m−1 (Lane-
Serff 1989), with the larger values occurring at levels within a room close to the height
of openings to external air of different temperature. Fitting a power-law distribution
to a particular but typical laboratory-scale analogue experiment (Lane-Serff 1989) the
stratification can be approximated by a power-law distribution of the form

N2 = N2
s (z/zs)

−1.7. (6.3)

When the experiments are scaled appropriately to be applicable to the density distri-
bution within a real room, N2

s = 0.01 s−2 and zs ∼ 1 m.
The present model identifies that in a room in which the stratification decays

sufficiently rapidly with height, the plume rises indefinitely and asymptotes to the
motion of a simple plume in a uniform environment. For the above-quoted directly
measured stratifications, even very weak sources of buoyancy (with initial volume
fluxes of the order of 10 cm3s−1, and temperature anomalies of the order of 10 K)
are sufficiently ‘strong’ to penetrate to the top of a room of depth 5 m. Therefore,
sufficiently far above the source, the volume flux in the plume is given by the

asymptotic relation Q(z) ∼ z5/3F
1/3
0 , where F0 is the initial buoyancy flux. Importantly,

even for a typical non-uniformly stratified closed room, the development of such a
plume drives a filling-box-type return flow with the descent speed of the first front
being well-predicted directly using the results of Baines & Turner (1969). Finally, we
note that the effectiveness of industrial chimney plumes in driving pollutants high
into the atmosphere is strongly controlled by the stratification. As inversions develop,
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and the stratification in the lower few kilometres of the atmosphere increases, only
very large plumes are able to continue ascending.

7. Conclusions
We have examined the role of ambient stratification on the ascent of turbulent

buoyant plumes. We have established is that if the environmental stratification decays
sufficiently rapidly above a source of buoyancy, then, even though the environment is
stratified, the plume is able to ascend indefinitely. However, if the ambient stratification
decays sufficiently slowly relative to the scale of the plume, then the motion of the
plume is confined within a finite distance of the source, as occurs in a uniformly
stratified environment. We have also identified a new class of similarity solutions
describing the ascent of plumes in a stratified environment. These solutions are
associated with the boundary between bounded and unbounded plumes. The solutions
are unstable in the sense that small perturbations in the initial conditions cause the
motion to diverge from the self-similar solution. We have applied the results to
determine critical conditions for plumes to penetrate the thermocline in the upper
ocean, and discussed the relevance of the results in a wider context.

Richard Kerswell gave some useful suggestions about the stability results presented
herein. Our research is supported by the NERC, EPSRC, the Leverhulme and Nuffield
Foundations and the Royal Society. We would like to express our gratitude to one of
the referees for bringing the pioneering paper of Zeldovich (1937) to our attention.

Appendix. Atmospheres with exponential density gradients
In the main text we examined the ascent of buoyant plumes and thermals through

atmospheres in which the stratification varies algebraically with height. For complete-
ness, here we describe the ascent of plumes and thermals through an environment in
which the stratification varies exponentially with height. We consider

N2 = N2
s exp(−z/zs). (A 1)

We adopt the same non-dimensional variables as in §§2 and 5, so that for plumes
the specific buoyancy flux F , the specific momentum flux M and the volume flux Q
evolve with height according to

dQ

dz
= M1/2,

dM

dz
=
QF

M
,

dF

dz
= −Qe−λz, (A 2a–c)

with λ as defined in (2.15). As expected, λ is still the key parameter in this model. For
small values of λ, the plume experiences a small decrease in the ambient stratification
with height and so the plume height only increases a small amount relative to the case
of a uniform environment. However, with larger values of λ, the plume height increases
much more significantly owing to the progressively less stratified environment which
the plume encounters. Eventually, for λ > λe, the ambient stratification decays so
rapidly relative to the evolution of the plume, that the plume is able to continue
rising and becomes unbounded. Numerical calculations show that λe = 0.847.

For thermals, we are able to derive an analogous result analytically, in a similar
fashion to §5. With initial conditions B = 1, V = 0, we only need consider the



248 C. P. Caulfield and A. W. Woods

equation for the specific buoyancy, which takes the form (cf. §5)

d

dz
B = − 1

27
z3e−µz. (A 3)

This can be integrated to yield

B = 1 +
2

9µ4
(−1 + e−µz) +

ze−µz

27

(
z2

µ
+

3z

µ2
+

6

µ3

)
. (A 4)

so that the thermal is able to escape the effects of the stratification for µ > µe, where

µe =

(
2

9

)1/4

= 0.6866. (A 5)

We deduce that in an exponentially stratified environment, a plume with sufficient
specific buoyancy flux,

Fs > (λezs)
4N−3

s , (A 6)

can propagate indefinitely, while a thermal requires initial specific buoyancy

Bs > (µezs)
4N−2

s (A 7)

to continue to propagate.
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